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Abstract

A non-linear strain–displacement relationship of a pre-twisted conical shell on the general shell theory is
utilized, and a method for vibration of a rotating cantilever conical shell with pre-twist is developed by the
principle of virtual work and the Rayleigh–Ritz method. Firstly, deformation and stress resultants caused
by rotation are analyzed. Secondly, an equilibrium of energy for vibration of a pre-twisted conical shell
having the conditions achieved in the first process is given and then an eigenfrequency equation of a
rotating cantilever conical shell with pre-twisted is formulated. The effects of parameters such as an angular
velocity, a radius of a hub, a setting angle, a twist angle, a subtended angle and a tapered ratio of cross-
section on the fundamental vibration are investigated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A cantilever shell is a model of blades that appear in the aerospace, turbomachinery, and other
engineering such as aerial propellers and turbofans. On the one hand, the complexity of
configuration such as twist, curvature, non-uniform cross-section, and thickness makes the
researches of blades difficult. But on the other it is quite significant for design, safety and life of
machinery to determinate their dynamic characteristics accurately because they are working at
high speed, which prompts researchers to devote their greater efforts on the problem.
From the previous research work of the blades, it is known that a beam was often used in study

on the dynamics of blades in past decades [1–3] although it is the simplest model of blades, and it

ARTICLE IN PRESS

*Corresponding author. Tel.: +86-571-88320472; fax: +86-571-88320130.

E-mail address: kokaka2sakura@hotmail.com (X.X. Hu).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00262-1



is also found in the recent researches of the problems such as linear or non-linear vibration
considering shear deformation, non-uniform cross-section, pre-twist, coupled vibration and
concentrated mass [4–8]. Comparing with the beam model, a plate and a shell are more
approximate models of blades, but there is a little work done. Ramamurti and Kielb [9] studied
rotating twisted plates by FEM with two different shape functions. Sreenivasamurthy and
Ramamurti [10] studied rotating pre-twisted and tapered plates by FEM with triangular shell
elements having three nodes and 18 degrees of freedom respectively. Leissa et al. [11] studied
cylindrical shells with camber and twist on the shallow shell theory by the Ritz method. Recently,
Tsuiji et al. [12] studied rotating thin twisted plates by the Rayleigh–Ritz method, and Hu and
Tsuiji [13] studied rotating cylindrical thin panels with twist on the general shell theory.
The main purpose in this paper is to extend our researches on twisted shells and to reveal

vibration characteristics of the shells subjected axial forces such as centrifugal forces. Based on a
non-linear relationship between strains and displacements for a pre-twisted conical shell derived
by the Green strain tensor on the general shell theory, a numerical analysis of vibration is
presented by the energy method. There are two processes in the numerical analysis, one is to
analyze deformation and stress resultants in a pre-twisted conical shell induced by rotation,
another is to formulate a governing equation for vibration of the rotating conical shell and then
study the vibration characteristics under considering the results achieved in the first process as the
initial conditions. The effects of parameters of this system such as an angular velocity, a radius of
a hub, a setting angle, a twist angle, a subtended angle and a tapered ratio of cross-section on
vibration characteristics of rotating cantilever conical shells with pre-twist are investigated by the
present method briefly.

2. Theoretical analysis

As shown in Fig. 1 that a pre-twisted conical shell is fixed on a periphery of a rigid hub at a
setting angle f; where a rectangular right handed Cartesian co-ordinate system is ðX1;Y1;Z1Þ fixed
in the space with O0 at the center of the rotating hub and another Cartesian co-ordinate system is
ðx; y; *zÞ with a set of unit vectors ði1; i2; i3Þ: K represents a twist angle at a free end of the conical
shell defined as K ¼ kl where the small k is a constant twist ratio. a; b and b are three parameters

ARTICLE IN PRESS

Fig. 1. A schematic diagram of a simple rotating blade system.
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of a cross-section along the lengthwise direction, among them a subtended angle b is a constant,
and a radius a and an arc-length b are variables. A tapered ratio of a conical shell is defined as
a ¼ b1=b0 where b0 and b1 denote the parameters at a fixed and a free ends, respectively. The
others are given in the figure.

2.1. Strain measures on shell theory

Let the mid-surface of the conical shell be taken as a reference surface which could be defined
by two curvilinear coordinates a1ða1 ¼ xÞ and a2ða2 ¼ ayÞ with vectors a1 and a2; respectively,
then a unit vector a3 perpendicular to the reference surface is chosen so that they form a local
right-handed orthogonal co-ordinates, or

a1ða1; a2Þ ¼
@rð0Þ0

@a1
; a2ða1; a2Þ ¼

@rð0Þ0

@a2
; a3ða1; a2Þ ¼

a1 � a2
ja1 � a2j

; ð1Þ

where r
ð0Þ
0 denotes a position vector of a point in the reference surface.

To a point P outside the reference surface with a distance a3; its position vector rð0Þ can be given
by

rð0Þ ¼ rð0Þ0 þ a3a3: ð2Þ

The shell is assumed to be subjected to deformation and the displacement vector of the point P is
U; then the corresponding position vector r is

r ¼ rð0Þ þUða1; a2; a3Þ

¼ rð0Þ þ U1a1 þ V1a2 þ W3a3; ð3Þ

where U1; V1 and W1 denote the displacement components of U in the directions a1; a2 and a3;
respectively. The covariant base vectors before deformation are denoted by gi ði ¼ 1; 2; 3Þ; and
those after deformation by Gi ði ¼ 1; 2; 3Þ; namely,

gi ¼
@rð0Þ

@ai

; Gi ¼
@r

@ai

ði ¼ 1; 2; 3Þ: ð4Þ

A strain measure with respect to the general curvilinear co-ordinates ða1; a2; a3Þ can be given by
the Green strain tensor as follows:

2fij ¼ Gi �Gj � gi � gj ði; j ¼ 1; 2; 3Þ: ð5Þ

Considering the Kirchhoff–Love Hypothesis for the pre-twisted thin conical shell, the following
equations can be achieved:

%U ¼ u �
z

g

p;xffiffiffi
g

p u þ
p;y

a
ffiffiffi
g

p v þ
@w

@x
�

q

a

@w

@y

 !
;

%V ¼ v �
zffiffiffi
g

p k �
p;xq

g

� �
u �

1

a
1þ

p;yq

g

� �
v �

qffiffiffi
g

p @w

@x
þ

ffiffiffi
g

p
a

1þ
q2

g

� �
@w

@y

" #
;

%W ¼ w;
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U ¼ %U �
pffiffiffi
g

p %W

 !
i1 þ f %U þ %V cos yþ

sin yffiffiffi
g

p %W

 !
i2

þ h %U � %V sin yþ
cos yffiffiffi

g
p %W

 !
i3; ð6Þ

which means that the displacements %U; %V and %W of an arbitrary point can be defined by the
displacements u; v and w of the corresponding point on the reference surface. The notations ð Þ;x
and ð Þ;y express partial differentiation with respect to x and y; respectively. The variables in the
paper are given in Appendix A.
Thereby, the engineering strains with respect to a local orthogonal co-ordinate system ðx; Z; zÞ at

the point P are obtained by

exx
eZZ
gxZ

8><
>:

9>=
>; ¼

1

1� %m
z

l

ZG %Uþ
1

2

%UTGT
xGx %U

%UTGT
yGy %U

%UTGT
xGy %U

8><
>:

9>=
>;; ð7Þ

where
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1 z
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0 0 0 1 z
l

z2

l2
0 0 0

0 0 0 0 0 0 1 z
l

z2

l2

2
664
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775; G ¼ ½Gi;j
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g

0 0
p;y
%ag

0 0 0 1 ffiffi
g

p � q

%a
ffiffi
g

p 0
� �

;

Gy ¼ 0 0 K ffiffi
g

p 0 0 � 1

%a
ffiffi
g

p 0 0 0 0 1
%a

0
h i

; ð8Þ

and the non-zero elements in matrix G are defined in Appendix B.
The variables in Eqs. (7) and (8) are dimensionless ones because the following dimensionless

indices are introduced:

U ¼
u

l
; V ¼

v

l
; W ¼

w

l
; X ¼

x

l
;

K ¼ kl; %a ¼
a

l
; %e ¼

e

l
; %d2 ¼ d2l; %d3 ¼ d3;

%m ¼ ml; %p;x ¼ p;xl; %q;x ¼ q;xl; ð9Þ
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2.2. Deformation and stress resultants by rotation

Thin conical shells are studied in here, therefore, it can be assumed that a centrifugal force is a
constant throughout the thickness and the position vector r can be rewritten as

r ¼

x0 þ x

a sin y

a cos y� e

8><
>:

9>=
>;

T

þ

u �
p

g
w

fu þ v cos yþ
sin yffiffiffi

g
p w

hu � v sin yþ
cos yffiffiffi

g
p w

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

T
0
BBBBBBBB@

1
CCCCCCCCA

i1

i2

i3

8><
>:

9>=
>;: ð10Þ

Neglected Coriolis effects, the D’Alembert force F per unit volume in the conical shell which
rotates at an angular velocity O is given by

F ¼ � r
@2r

@t2ime
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¼ � o2r
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>:
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where Fe and Fc denote an inertia force of vibration and a centrifugal force, respectively. o is a
natural frequency of vibration, r a density of a material, and c ¼ fþ kx:
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As the centrifugal force is considered alone, the following equation can be given by the principle
of virtual work:

0 ¼
Z Z Z

vol

d½ eL
xx eL

ZZ gL
xZ 


sxx
sZZ
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g

p
1� %m

z

l

! "
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g

p
1� %m

z

l

! "
dxa dy dz; ð12Þ

where sð0Þxx ; s
ð0Þ
ZZ and tð0ÞxZ denote the stresses produced by the centrifugal force.

Substituting the related quantities into Eq. (12), integrating with respect to z; multiplying by
l2=D; and then readjusting the equation yieldZ Z

S

d %UT½GT %DGþ %N
ð0Þ
xxG

T
xGx þ %Nð0Þ

ZZG
T
yGy þ %N

ð0Þ
xZ ðG
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 %U
ffiffiffi
g

p
%a dX dy

� %O2l20

Z Z
S

½ða11U þ a12V þ a13W ÞdU þ ða21U þ a22V þ a23W ÞdV þ ða31U þ a32V

þ a33W ÞdW 

ffiffiffi
g

p
%a dX dy

¼ %O2l20

Z Z
S

ð %b1dU þ %b2dV þ %b3dW Þ
ffiffiffi
g

p
%a dX dy; ð13Þ

where

%D ¼

%D1 n %D1 0

%D1 0

Sym:
1� n
2

%D1

2
6664

3
7775; %D1 ¼

%H %m 1

1 0

Sym: 0

2
64

3
75; %H ¼

Et

1� n2
l2

D
; D ¼

Et3

12ð1� n2Þ
;

%O ¼
O
o0

; %N
ð0Þ
xx

%Nð0Þ
ZZ

%N
ð0Þ
xZ

h i
¼

l2

D

Z t=2

�t=2
sð0Þxx sð0ÞZZ tð0ÞxZ

h i
1� %m

z

l

! "
dz: ð14Þ

o0 is a reference frequency and l0 is a reference frequency parameter defined as the same as the l:
aij ði; j ¼ 1; 2; 3Þ and %bi ði ¼ 1; 2; 3Þ are defined in Appendix C.
According to the demand of the Rayleigh–Ritz method, the displacement components U ; V

and W should satisfy the geometric boundary conditions which are assumed to be as two-
dimensional algebraic polynomial functions,

U ¼
XNu

i¼1

XMu

j¼0

a0ijX
iyj; V ¼

XNv

k¼1

XMv

l¼0

b0
klX

kyl ; W ¼
XNw

m¼2

XMw

n¼0

c0mnX myn; ð15Þ

where a0ij ; b0kl and c0mn are unknown coefficients.
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Substituting Eq. (15) into Eq. (13) and integrating over the surface area of the conical shell, the
following algebraic equations are achieved:

A11 A12 A13

A22 A23

Sym: A33

2
64

3
75

a0

b0

c0

8><
>:

9>=
>; ¼

P1

P2

P3

8><
>:

9>=
>;; ð16Þ

where Aij ði; j ¼ 1; 2; 3Þ are stiffness matrices included inherent, geometric and supplementary
stiffness, in which the geometric stiffness depends on the deformation and stress resultants by
rotation. Pi ði ¼ 1; 2; 3Þ are force vectors.
It is seen that the unknown coefficients a0

ij ; b0kl and c0mn can be solved from Eq. (16), then the
deformation and the stress resultants due to rotation can be obtained in turn.

2.3. Free vibration of rotating conical shells

Let us assume the deformation and the stress resultants as initial conditions and then analyze
vibration by the same method as aforementioned. The principle of virtual work for free vibration
of a rotating pre-twisted conical shell is given as the following non-dimensional equation:Z Z

S

dUT½GT %DGþ %N
ð0Þ
xxG

T
xGx þ %Nð0Þ

ZZG
T
yGy þ %N

ð0Þ
xZ ðG

T
xGy þGT

yGxÞ
U
ffiffiffi
g

p
%a dX dy

� %O2l20

Z Z
S

½ða11U þ a12V þ a13W ÞdU þ ða21U þ a22V þ a23W ÞdV

þ ða31U þ a32V þ a33W ÞdW 

ffiffiffi
g

p
%a dX dy

¼ �l2
Z Z

S

½ðg þ q2ÞUdU þ qUdV þ qVdU þ VdV þ WdW 

ffiffiffi
g

p
%a dX dy; ð17Þ

where l is a vibration frequency parameter defined by

l2 ¼
12ð1� n2Þro2l4

Et2
: ð18Þ

Further, let Eq. (15) into Eq. (17), an eigenfrequency equation is given in a matrix form, or

A11 � l2B11 A12 � l2B12 A13

A22 � l2B22 A23

Sym: A33 � l2B33

2
664

3
775

a0

b0

c0

8><
>:

9>=
>; ¼ 0; ð19Þ

where Bij ði; j ¼ 1; 2; 3Þ denote mass matrices.

3. Numerical results and analyses

As shown in previous section, it is an iterative procedure for solving the deformation and
strain resultants caused by rotation, a criterion is needed for the procedure control. In here,
the frequency parameter l is considered as a controlled quantity which satisfies the following
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equation:

lð jþ1Þ
i � lð jÞ

i

$$$ $$$
lð jþ1Þ

i

%0:1% ði ¼ 1B8Þ; ð20Þ

where i denotes the ith vibration mode and j denotes the jth iteration.
The numerical integration method in this paper is Gauss–Legendre method with 16 integration

points that can ensure the solutions of this kind problem convergence. The Poisson ratio n is 0.3.

3.1. Convergence of frequency parameters

From Eq. (15), it is known that a proper choice of the numbers of terms in the displacement
functions is significant for approximate solutions. For simplicity, it is assumed that the maximum
powers of two variables in U and V functions are the same, because they are in-plane
displacement components, or Nu ¼ Nv and Mu ¼ Mv: A blade, whose parameters are a thickness
ratio b0=t ¼ 25; an aspect ratio l=b0 ¼ 2:0; a tapered ratio a ¼ 0:6; a subtended angle b ¼ 60�; a
twist angle K ¼ 60�; a setting angle f ¼ 45�; a radius of a hub X0 ¼ 2:0 and an angular velocity
%O ¼ 1:0; is analyzed by the present method and the results for the combinations of various terms
are shown in Table 1. A good rate of convergence is obtained as the maximum powers of X and y
are 8 and 7 in U and V functions, respectively, and 8 and 8 in W function. Herein, the above
choice for the displacement functions is adopted in the following analyses.

3.2. Accuracy of the present method

As we know that there were no researches on rotating twisted and open conical shells, so a
rotating twisted cylindrical thin panels, which is a typical conical shell with a tapered ratio of
cross-section (a ¼ 1:0), is considered for demonstrating the accuracy and practicability of the
present method. The parameters are given as the follows: b0=t ¼ 20; b0=l ¼ 0:5; K ¼ 0� and 60�;
b ¼ 30� and 60�; f ¼ 0�; X0 ¼ 0:0 and %O ¼ 0:8: The first eight frequency parameters obtained by
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Table 1

Convergence of li for various number of terms in displacement functions ðb0=t ¼ 25; l=b0 ¼ 2:0; a ¼ 0:6; b ¼ 60�;
K ¼ 60�;f ¼ 45�;X0 ¼ 2:0; %O ¼ 1:0Þ

Nu;Mu 7, 6 7, 7 7, 7 7, 7 8, 7 8, 7

Nv;Mv 7, 6 7, 7 7, 7 7, 7 8, 7 8, 7

Nw;Mw 8, 7 8, 7 8, 8 9, 8 8, 8 9, 8

Terms 49=49=56 56=56=56 56=56=63 56=56=72 64=64=63 64=64=72

1 9.4108 9.4936 9.4105 9.4090 9.4096 9.4083

2 27.947 28.379 27.946 27.941 27.940 27.936

3 47.252 47.538 47.251 47.243 47.242 47.236

4 71.986 73.067 71.982 71.978 71.963 71.950

5 101.41 102.98 101.41 101.40 101.32 101.30

6 117.18 117.73 117.17 117.15 116.95 116.91

7 136.51 136.96 136.48 136.44 135.81 135.72

8 157.74 157.92 157.69 157.64 157.04 156.90
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the present method and provided by a Ref. [13] are shown in Table 2. It is observed that they have
a good agreement and the maximum difference between them is less than 1%.

3.3. Effects on fundamental vibration

In this section, a blade is considered as a cantilever pre-twisted conical shell. The general
parameters are given as follows: K ¼ 30�; b ¼ 60�; f ¼ 0�; X0 ¼ 0:5; l=b0 ¼ 2:0; b0=t ¼ 20 and 40,
and a ¼ 0:6; which means when a effect of a parameter is investigated the others remain the above
values. The angular velocity %O always changes from 0:0 to 3:0:
An effect of a twist angle on the fundamental frequency parameter l1 is studied and the results

are given in Fig. 2. In general, the fundamental frequency parameter decreases with a twist angle
increasing and increases with an increase in an angular velocity %O for the conical shells with two
thickness ratios b0=t ¼ 20 and 40: It is obviously that the thin conical shell is more sensitive to the
twist angle than the thick one, or the fundamental frequency parameter decreases greatly with an
increase in a twist angle for the thin conical shell. For instance at %O ¼ 0:0; the variations of l1 are
22.16% for the thin conical shell and only 4.88% for the thick one with the twist angle rising from
0� to 15�; and those are 97.93% and 31.89% when the K changes from 0� to 45�: But with the
change in the angular velocity the increase of the fundamental frequency parameter of the thick
conical shell is greater than that of the thin one for various twist angles. In the case of %O rising
from 0.0 to 3.0 and the various twist angles K ¼ 0�; 15�; 30� and 45�; the increases in l1 of the
conical shell with b0=t ¼ 20 are 71.45%, 78.04%, 92.65% and 107.08%, respectively, and 24.05%,
42.33%, 63.34% and 79.25% for the other with b0=t ¼ 40: Otherwise, it is seen that the differences
caused by various twist angle decrease with an increase in the angular velocity. From the above, it
is known that a centrifugal force of rotation may cause deformation against the pre-twisted
deformation that is large for a thick and highly pre-twisted conical shell. There is an obvious
phenomenon in Table 3 that the number of iteration for solving convergent frequency parameters
increases with the twist angle and the angular velocity increasing, which could be explained by the
anti-deformation due to the pre-twist and the centrifugal force.
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Table 2

Comparisons of frequency parameters li for rotating cylindrical thin panels ðb0=t ¼ 20; l=b0 ¼ 2:0; a ¼ 1:0;
f ¼ 0�;X0 ¼ 0:0; %O ¼ 0:8Þ

K 0� 60�

b 30� 60� 30� 60�

Method Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] Present

1 6.2984 6.2977 9.6696 9.6677 4.8728 4.8865 6.2134 6.2030

2 15.393 15.393 15.560 15.562 17.230 17.258 19.393 19.391

3 32.141 32.139 49.260 49.254 31.351 31.246 36.144 35.951

4 49.324 49.324 50.770 50.770 52.177 52.178 54.311 54.339

5 57.471 57.457 57.628 57.614 75.390 75.175 76.140 75.843

6 78.307 78.303 90.201 90.200 87.821 87.787 91.338 91.266

7 92.972 92.972 100.06 100.05 94.268 94.135 105.91 105.35

8 95.100 95.098 108.40 108.39 109.40 108.99 109.19 109.02
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Fig. 3 depicts an influence of a setting angle f for rotating conical shells without and with twist.
A decrease tendency is found for the fundamental frequency parameter with an increase in a
setting angle and it becomes greatly as an angular velocity increases in the combinations of K and
b0=t: The variations in the case of K ¼ 30� are larger than those in the case of K ¼ 0�: For an
example of b0=t ¼ 20 and f ¼ 0�; the variations are 92.65% for K ¼ 30� and 71.45% for K ¼ 0�

as %O rises from 0.0 to 3.0, but for a given twist angle the variations decrease with an increase in the
setting angle, they are 92.65%, 79.71% and 58.15% in the three cases of f ¼ 0�; 30� and 60�;
respectively. To the conical shell with b0=t ¼ 40; the variation of the fundamental frequency
parameter with the angular velocity %O is smaller than that of the other with b0=t ¼ 20 for the
combinations of K and f: The effect of the twist angle remains the same as aforementioned, or the
fundamental frequency parameter decreases with an increase in the twist angle.
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Fig. 2. Variation of l1 versus %O on various K and b0=t:

Table 3

Effect of K on iterations of calculation ðb0=t ¼ 20; l=b0 ¼ 2:0; a ¼ 0:6; b ¼ 60�;X0 ¼ 0:5;f ¼ 0�Þ

O 0.0 0.5 1.0 1.5 2.0 2.5 3.0

K Iterations of calculation

0� 3 3 3 3 4 5 7

15� 3 3 4 6 8 11 14

30� 3 3 5 7 10 14 18

45� 3 3 6 9 14 21 30
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An effect of a subtended angle b on the fundamental frequency parameter is investigated for
rotating conical shell with the same combinations of the thickness ratios and the twist angles as
the above. It is known that an increase in the subtended angle means an increase in the curvature
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in chordwise direction under a constant length of arc on an arbitrary cross-section, and then the
stiffness of the conical shell raises, which is why the fundamental frequency parameter increases
with b increasing as shown in Fig. 4. The influence of the subtended angle and the twist angle on
the thin conical shell is greater than that on the thick one but the variation caused by rotation is
contrary, where it increases with an increase in K and decreases with an increase in b: In the case
of K ¼ 30� and b rising from 30� to 60� and 90�; the variations of l1 are 73.21% and 149.62% for
the thin shells, and 54.65% and 114.18% for the thick ones at %O ¼ 0:0:With %O varying from 0.0 to
3.0 the variations of l1 are 35.31% and 63.34% corresponding to b ¼ 60� and 90� for thin conical
shells with K ¼ 30�; and 53.28% and 92.65% for the thick ones. The effect decreases with %O
increasing. In the case of b0=t ¼ 20 and K ¼ 0�; the variation reaches 127.81% at %O ¼ 0:0 and
only 23.21% at %O ¼ 3:0 when the subtended angle b changes from 30� to 90�; respectively, the
same trend is observed for the case of K ¼ 30�:
An influence of a tapered ratio of cross-section a on the fundamental frequency parameter is

given in Fig. 5. It is observed that the fundamental frequency parameter decreases with an
increase in a for combinations of b0=t and K ; because an increase of the tapered ratio makes the
curvature decrease and then stiffness decrease under a condition of a constant subtended angle.
The variation of the fundamental frequency parameter shows an increase with the angular
velocity for a given a which is greater in the case of K ¼ 30� than that in the case of K ¼ 0�: The
effect of a on the thin conical shell is larger than on the thick one, which is the same as the
influence of the twist angle. The curves of l1 with the angular velocity %O for a given b0=t and K are
almost parallel to each other, which means that the influence of a on l1 is not or hardly affected by
the angular velocity.
A radius X0 of a rotating hub, which is considered as a significant factor for the magnitude of a

centrifugal force, is also investigated and the results are shown in Fig. 6. It is known that the
centrifugal force increases with the radius X0 increasing which leads large deformation and stress
resultants in the conical shell, therefore the fundamental frequency parameter appears an increase
that becomes large with an increase in the angular velocity. The presence of the twist angle makes
l1 decrease, which is great for thin conical shell. But the increase with the %O is great for thick
conical shells with both cases of K : For example of %O changing from 0.0 to 3.0 and X0 ¼ 4:0; the
variations are 188.06% for K ¼ 0� and 227.58% for K ¼ 30� in the case of b0=t ¼ 20; they are
75.14% and 159.48% in the case of b0=t ¼ 40:

4. Conclusions

A numerical method for free vibration of rotating pre-twisted conical shells is proposed, where
the strain measures including non-linear parts are derived by the Green strain tensor on the thin
shell theory, and the equations are formulated by the principle of virtual work and the Rayleigh–
Ritz method. There are two processes in the present method. Firstly, deformation and stress
resultants are analyzed considering the centrifugal force induced by rotation. Secondly, the free
vibration characteristics of the conical shell subjected the deformation and stress resultants
obtained in the first process is achieved. The effects of various parameters such as a twist angle, a
subtended angle, a setting angle, a tapered ratio, a radius of a hub and a angular velocity of
rotation on the fundamental frequency parameter are investigated.
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The twist angle makes the fundamental frequency decrease for all the combinations of other
parameters, but the variation of the fundamental frequency with an increase in the angular velocity
becomes great due to the presence of the twist angle, which is more significant for a thin conical
shell. The fundamental frequency shows an increase with the subtended angle and the radius of the
hub increasing, and a decrease with an increase in the tapered ratio and the setting angle. It is
observed that an increase in the angular velocity makes the fundamental frequency parameter
increase and the effects of other parameters on the fundamental frequency parameter change.
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Appendix A

The variables used in this paper are defined as the following,

f ¼ a;x sin y� kða cos y� eÞ; h ¼ a;x cos y� e;x þ ka sin y;

p ¼ f sin yþ h cos y; g ¼ 1þ p2;

q ¼ f cos y� h sin y; d2 ¼ p;x þ kp;y; d3 ¼ ap;x � p;yq;

m ¼ �
1

a
ffiffiffi
g

p 1�
d3

g

� �
: ðA:1Þ

Appendix B

The non-zero elements in matrix G are

G1;1 ¼ 1; G1;2 ¼ �
q

%a
; G1;3 ¼

p %p;x

g
þ

%p;x

g
Fð0Þ

x ; G1;6 ¼
pp;y

%ag
þ

p;y

%ag
Fð0Þ

x ;

G1;10 ¼
1ffiffiffi

g
p Fð0Þ

x ;

G1;11 ¼ �
q

%a
ffiffiffi
g

p Fð0Þ
x ; G1;12 ¼ �

%d3

%ag
ffiffiffi
g

p ; G2;1 ¼
1

%a
ffiffiffi
g

p 1�
%a %p;x

g

� �
;

G2;2 ¼
1

%a
ffiffiffi
g

p K þ
%p;xq

g

� �
;

ARTICLE IN PRESS

X.X. Hu et al. / Journal of Sound and Vibration 271 (2004) 47–6662



G2;3 ¼
1

%ag
ffiffiffi
g

p Ka;xq þ p %p;x þ q %q;x þ 2
p %p;x %d3

g

� �
�

%p;x %m

g
Fð0Þ

x ;

G2;4 ¼ �
p;y

%ag
ffiffiffi
g

p ; G2;5 ¼
p;yq

%a2g
ffiffiffi
g

p ;

G2;6 ¼
1

%a2g
ffiffiffi
g

p a;xq � %a %q;x þ pp;y þ qq;y þ 2
pp;y %d3

g

� �
�

p;y %m

%ag
Fð0Þ

x ;

G2;7 ¼ �
1

g
; G2;8 ¼ �

q2

%a2g
;

G2;9 ¼
2q

%ag
; G2;10 ¼

p %d3

%ag2
�

%mffiffiffi
g

p Fð0Þ
x ;

G2;11 ¼ �
1

%a2g
a;xq � %a %q;x þ pp;y þ qq;y þ

pq %d3

g

� �
þ

q %m

%a
ffiffiffi
g

p Fð0Þ
x ;

G2;12 ¼ �
%d2

%ag2
; G3;4 ¼ �

p;y

%a2g2
; G3;5 ¼ �

Kp;y

%a2g2
; G3;7 ¼ �

1

%ag
ffiffiffi
g

p ;

G3;8 ¼
Kq

%a2g
ffiffiffi
g

p ;

G3;9 ¼
1

%a2g
ffiffiffi
g

p ð2q � p;yÞ; G3;10 ¼
p %d2

%ag2
ffiffiffi
g

p ;

G3;11 ¼ �
1

%a3g
ffiffiffi
g

p a;xq � %a %q;x � K %aq;y þ
%apq %d2

g

� �
;

G4;2 ¼
q

%a
; G4;3 ¼

a;x

%a
þ

Kffiffiffi
g

p Fð0Þ
y ; G4;5 ¼

1

%a
; G4;6 ¼ �

1

%a
ffiffiffi
g

p Fð0Þ
y ;

G4;11 ¼ �
1

%a
Fð0Þ

y ; G4;12 ¼
1

%a
ffiffiffi
g

p ;

G5;1 ¼
p;yq

%ag
ffiffiffi
g

p ; G5;2 ¼ �
1

%a
ffiffiffi
g

p K þ
%p;xq

g

� �
;

G5;3 ¼
1

%ag
ffiffiffi
g

p ðp;y %q;x � p %p;x � a;x %p;xÞ �
K %mffiffiffi

g
p Fð0Þ

y ;

G5;4 ¼
p;y

%ag
ffiffiffi
g

p ; G5;5 ¼
1

%a2
ffiffiffi
g

p 1�
%a %p;x

g

� �
;
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G5;6 ¼ �
2pp;y

%a2g
ffiffiffi
g

p þ
%m

%a
ffiffiffi
g

p Fð0Þ
y ; G5;8 ¼ �

1

%a2
;

G5;10 ¼ �
p

%ag
; G5;11 ¼

pq

%a2g
�

%m

%a
Fð0Þ

y ; G5;12 ¼ �
%d2

%ag2
;

G6;1 ¼ �
Kp;y

%ag2
; G6;4 ¼

p;y

%a2g2
;

G6;6 ¼
p;y

%a2g2
p %d2

g
�

a;x

%a

� �
; G6;8 ¼

%p;x

%a2g
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g

p ; G6;9 ¼ �
p;y

%a2g
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G6;10 ¼
p %d2

%ag2
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p ; G6;11 ¼ �
pq %d2

%a2g2
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g
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G7;1 ¼
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g

p
%a

1�
q2

g

� �
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G7;3 ¼ �
1

%a
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g

p ða;xq � %a %q;xÞ þ
%p;x

g
Fð0Þ

y þ
Kffiffiffi

g
p Fð0Þ

x ; G7;4 ¼
1ffiffiffi
g
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G7;5 ¼ �
q

%a
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g

p ; G7;6 ¼ �
p

%a
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g

p þ
%p;y

%ag
Fð0Þ

y �
1

%a
ffiffiffi
g

p Fð0Þ
x ; G7;10 ¼
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g

p Fð0Þ
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1
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Fð0Þ

x �
q

%a
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g

p Fð0Þ
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G7;12 ¼ �
2p;y

%ag
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2q

%ag
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2

%ag
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%ag2
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� �
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� �
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G9;7 ¼ �
p;y

%ag2
; G9;8 ¼ �

1

%a2g
K þ

%p;xq

g

� �
; G9;9 ¼ �

1

%a2g
1�

1

g
ð %a %p;x þ p;yqÞ

� �
;

G9;11 ¼
1

%a2g

a;x

%a
þ
1

g
p;y %q;x �

a;xp;yq

%a
� a;x %p;x � Kpp;y

! "� �
; ðB:1Þ

where Fð0Þ
x and Fð0Þ

y are

Fð0Þ
x ¼

%p;x

g
U ð0Þ þ

p;y

%ag
V ð0Þ þ

1ffiffiffi
g

p @W ð0Þ

@X
�

q

%a
ffiffiffi
g

p @W ð0Þ

@y
;

Fð0Þ
y ¼

Kffiffiffi
g

p U ð0Þ �
1

%a
ffiffiffi
g

p V ð0Þ þ
1

%a

@W ð0Þ

@y
; ðB:2Þ

U ð0Þ; V ð0Þ and W ð0Þ are deformation produced by the centrifugal force.

Appendix C

The variables in Eq. (13) are defined as

%b1 ¼ X0 þ X ; %b2 ¼ %a cos ðy� cÞ þ %e sin c cos c;

%b3 ¼ � %a sin c sin ðy� cÞ � %e sin
2c;

a11 ¼ c11 þ fc21 þ hc31; a12 ¼ c12 þ fc22 þ hc32;

a13 ¼ c13 þ fc23 þ hc33;

a21 ¼ c21 cos y� c31 sin y; a22 ¼ c22 cos y� c32 sin y;

a23 ¼ c23 cos y� c33 sin y;

a31 ¼
1ffiffiffi

g
p ð�pc11 þ c21 sin yþ c31 cos yÞ;

a32 ¼
1ffiffiffi

g
p ð�pc12 þ c22 sin yþ c32 cos yÞ;

a33 ¼
1ffiffiffi

g
p ð�pc13 þ c23 sin yþ c33 cos yÞ;

c11 ¼ 1; c12 ¼ 0; c13 ¼ �
pffiffiffi
g

p ; c21 ¼ ð f cosc� h sin cÞ cosc;

c22 ¼ cosðy� cÞ cosc;

c23 ¼
1ffiffiffi

g
p sin ðy� cÞ cos c; c31 ¼ ð�f coscþ h sin cÞ sin c;

ARTICLE IN PRESS

X.X. Hu et al. / Journal of Sound and Vibration 271 (2004) 47–66 65



c32 ¼ �cosðy� cÞ sin c;

c33 ¼ �
1ffiffiffi

g
p sin ðy� cÞ sin c: ðC:1Þ
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